

© 2019 California Institute of Technology. Government sponsorship acknowledged.

Juno Mission Overview

Detector Instrument (JEDI)

Engineering Challenges: Solar Power

National Aeronautics and Space Administration

Where is Juno Now?

Juno's Science Objectives

Origin

Determine the abundance of water and constrain the mass of Jupiter's dense core to distinguish among theories of planet formation.

Interior

Understand Jupiter's interior structure and how material moves deep within the planet by mapping its gravitational and magnetic fields

Atmosphere

Map variations in atmospheric composition, temperature, cloud opacity and dynamics to depths greater than 100 bars at all latitudes

Magnetosphere

Characterize and explore the threedimensional structure of Jupiter's polar magnetosphere and auroras.

- **Gravity Science (JPL, ASI)**
- **Magnetometer— MAG (GSFC)**
- Microwave Radiometer— MWR (JPL)
 - Jupiter Energetic Particle Detector— JEDI (APL)
 - **Jovian Auroral Distributions Exp.— JADE (SwRI)**
 - Plasma Waves Instrument— Waves (U of Iowa)
 - **UV Spectrograph— UVS (SwRI)**
- Infrared Camera— JIRAM (ASI)
- Visible Camera— JunoCam (Malin)

 Examine changes in frequency as a spacecraft flies close to a celestial body to determine the mass/density and spherical harmonic expansion of the gravitational field

$$U = \frac{\mu}{r} - \frac{\mu^*}{r} \sum_{l=1}^{\infty} \left(\frac{a_e}{r}\right)^l P_l(\sin\phi) J_l + \frac{\mu^*}{r} \sum_{l=1}^{\infty} \sum_{m=1}^{l} \left(\frac{a_e}{r}\right)^l P_{lm}(\sin\phi) [C_{lm}\cos m\lambda + S_{lm}\sin m\lambda]$$

-100

100

Zonal wind (m s-1)

Zonal wind (m s⁻¹)

Jupiter's Interior

Probing the Depth of the Atmosphere

MWR Sees Beneath the Clouds

The Atmosphere is Surprisingly Complex

Ammonia Distribution

National Aeronautics and Space Administration

After 8 Orbits: A New Magnetic Map

 B_r (Gauss) at $r = 0.85 R_j$

"Sounds of Jupiter" with Waves Instrument

jpl.nasa.gov